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Abstract
The variational formalism for classical field theories is extended to the setting
of Lie algebroids. Given a Lagrangian function, we study the problem of
finding critical points of the action functional when we restrict the fields to
being morphisms of Lie algebroids. In addition to the standard case, our
formalism includes as particular examples the case of systems with symmetry
(covariant Euler–Poincaré and Lagrange–Poincaré cases), sigma models or
Chern–Simons theories.

PACS numbers: 03.50.−z, 11.10.Ef, 02.30.Xx
Mathematics Subject Classification: 58A20, 70S05, 49S05, 58H99

1. Introduction

By using the geometry of Lie algebroids, Weinstein [26] showed that it is possible to give
a common description of the most interesting classical mechanical systems. Later, this
theory was extended to time-dependent classical mechanics in [22, 20], by introducing a
generalization of the notion of Lie algebroid when the bundle is no longer a vector bundle but
an affine bundle. The particular case considered in [23] is the analogue of a first jet bundle
of a bundle M → R, and hence it is but a particular case of a first-order field theory for a
one-dimensional spacetime. Therefore, it is natural to investigate whether it is possible to
extend our formalism to the case of a general field theory, where the spacetime manifold is no
longer one dimensional.

Generally speaking, there are three different but closely related aspects in the analysis
of first-order field theories: the variational approach, which leads to the Euler–Lagrange
equations, the multisymplectic formalism on the first jet bundle and the infinite-dimensional
approach on the space of Cauchy data. The aim of this paper is to study several aspects of
the variational approach to the theory formulated in the context of Lie algebroids, and we will
leave for the future the study of the multisymplectic and the infinite-dimensional formalism.
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http://dx.doi.org/10.1088/0305-4470/38/32/005
mailto:emf@unizar.es
http://stacks.iop.org/ja/38/7145


7146 E Martı́nez

The standard geometrical approach to the Lagrangian description of first-order classical
field theories [4, 10, 14, 1, 12] is based on the canonical structures on the first-order jet bundle
[24] of a fibre bundle whose sections are the fields of the theory. Thinking of a Lie algebroid
as a substitute for the tangent bundle to a manifold, the analogue of the field bundle to be
considered here is a surjective morphism of Lie algebroids π : E → F . In the standard theory,
a 1-jet of a section of a bundle is but the tangent map to that section at the given point, and
therefore it is a linear map between tangent spaces which has to be a section of the tangent of
the projection map. In our theory, the analogue object is a linear map from a fibre of F to a
fibre of E which is a section of the projection π . The space Jπ of these maps has the structure
of an affine bundle and it is the space where our theory is developed.

In the case F = TN, we can set a constrained variational problem consisting of finding
those morphisms of Lie algebroids which are critical points of the integral of a Lagrangian
function defined on Jπ (see section 6 for a clear statement of the variational problem). By
the choice of some special variations determined by the underlying geometry, we can find the
Euler–Lagrange equations.

The situation is to be compared with the so-called covariant reduction theory [7, 6, 5],
where the field equations are obtained by reducing the variational problem, i.e. by restricting
the variations to those coming from variations for the original unreduced problem. Therefore,
the equations are of a different form in each case, Euler–Poincaré, Lagrange–Poincaré for a
system with symmetry and (a somehow different) Lagrange–Poincaré for semidirect products.
In contrast, our theory includes all these cases as particular cases of a common setting.

We finally mention that ideas related to those explained in this paper have been recently
considered by Strobl and co-workers [25, 2] in the so-called off-shell theory. In this respect,
our theory should be considered as the on-shell counterpart for the cases considered there.

The organization of the paper is as follows. In section 2 we will recall some differential
geometric structures related to Lie algebroids, such as the exterior differential and the flow
defined by a section. In section 3 we define the analogue of the manifold of 1-jets in this
algebraic setting, which is the space where the Lagrangian of the theory is defined. In
section 4 we find local conditions for a section of our bundle to be a morphism of Lie
algebroids. In section 5 we define the concept of complete lift of a section, which plays
the role of the complete lift or first jet prolongation of a vector field in the standard theory.
The main results in this paper are established in section 6, where we state the constrained
variational problem we want to solve and we find the Euler–Lagrange equations. Finally, in
section 7 we show some examples which illustrate the results in this paper.

1.1. Notation

All manifolds and maps are taken in the C∞ category. The set of smooth functions on a
manifold M will be denoted by C∞(M). The set of smooth vector fields on a manifold M will
be denoted by X(M). The set of smooth sections of a fibre bundle π : B → M will be denoted
by Sec(π) or Sec(B) when there is no possible confusion.

The tensor product of a vector bundle τ : E → M by itself p times will be denoted by
τ⊗p: E⊗p → M , and similarly the exterior power will be denoted by τ∧p: E∧p → M . The
set of sections of the dual τ ∗∧p: (E∗)∧p → M will be denoted by

∧p
E. For p = 0, we have∧0

E = C∞(M).
The notion of pullback of a tensor field by a vector bundle map needs some attention.

Given a vector bundle map �: E → E′ over a map φ: M → M ′, for every section β of the
p-covariant tensor bundle (E′∗)⊗p → M ′, we define the section ��β of (E∗)⊗p → M by

(��β)m(a1, a2, . . . , ap) = βφ(m)(�(a1),�(a2), . . . , �(ap)).
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The tensor ��β is said to be the pullback of β by �. For a function f ∈ C∞(M ′) (i.e. for
p = 0), we just set ��f = φ∗f = f ◦ φ. It follows that ��(α ⊗ β) = (��α) ⊗ (��β).

When � is fibrewise invertible, we define the pullback of a section σ of E′ by
(��σ)m = (�m)−1(σ (φ(m)), where �m is the restriction of � to the fibre Em over m ∈ M .
Thus, the pullback of any tensor field is defined.

In the case of the tangent bundles E = TM and E′ = TM′, and the tangent map
T ϕ: TM → TM′ of a map ϕ: M → M ′, we have that (T ϕ)�β = ϕ∗β is the ordinary pullback
by ϕ of a tensor field β on M ′. Note the difference between the symbols � (star) and ∗ (asterisk).

2. Preliminaries on Lie algebroids

In this section we recall some well-known notions and introduce a few concepts concerning
the geometry of Lie algebroids. We refer the reader to [3, 17] for details about Lie groupoids,
Lie algebroids and their role in differential geometry.

2.1. Lie algebroids

Let M be an n-dimensional manifold and let τ : E → M be a vector bundle. A vector bundle
map ρ: E → TM over the identity is called an anchor map. The vector bundle E together
with an anchor map ρ is said to be an anchored vector bundle. A structure of Lie algebroid
on E is given by a Lie algebra structure on the C∞(M) module of sections of the bundle,
(Sec(E), [·, ·]), together with an anchor map, satisfying the compatibility condition

[σ, f η] = f [σ, η] + (ρ(σ )f )η.

Here f is a smooth function on M, σ and η are sections of E and we have denoted by ρ(σ)

the vector field on M given by ρ(σ)(m) = ρ(σ(m)). From the compatibility condition and
the Jacobi identity, it follows that the map σ 	→ ρ(σ) is a Lie algebra homomorphism from
Sec(E) to X(M).

It is convenient to think of a Lie algebroid as a substitute of the tangent bundle of M. In
this way, one regards an element a of E as a generalized velocity, and the actual velocity v is
obtained when applying the anchor to a, i.e., v = ρ(a). A curve a: [t0, t1] → E is said to be
admissible if ṁ(t) = ρ(a(t)), where m(t) = τ(a(t)) is the base curve.

When E carries a Lie algebroid structure, the image of the anchor map, ρ(E), defines
an integrable smooth generalized distribution on M. Therefore, M is foliated by the integral
leaves of ρ(E), which are called the leaves of the Lie algebroid. It can be proved that, if F is an
r-dimensional leaf of the Lie algebroid foliation, FE , passing trough the point m0 ∈ M , then
a point m1 ∈ M is in the same leaf F if and only if there exists a continuous piecewise smooth
path γ : I → M from m0 to m1 tangent to FE (the base path of an admissible continuous
piecewise path in E) and such that dim(FE(m(t)) = r for all t ∈ I .

A Lie algebroid E is said to be transitive if the anchor map ρ is surjective. In this case,
the leaves of the Lie algebroid are the connected components of M. Thus, if M is connected,
E has only one leaf, which is obviously equal to M. If E is not transitive, then the restriction
of the Lie algebroid to a leaf L ⊂ M,E|L → L is transitive.

Given local coordinates (xi) in the base manifold M and a local basis {eα} of sections
of E, we have local coordinates (xi, yα) in E; if a ∈ Em is an element then we can write
a = aαeα(m) and thus the coordinates of a are (mi, aα), where mi are the coordinates of the
point m. The anchor map is locally determined by the local functions ρi

α on M defined by
ρ(eα) = ρi

α(∂/∂xi). In addition, for a Lie algebroid, the Lie bracket is determined by the
functions Cα

βγ defined by [eα, eβ ] = C
γ

αβeγ . The functions ρi
α and Cα

βγ are said to be the
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structure functions of the Lie algebroid in this coordinate system. They satisfy the following
relations:

ρj
α

∂ρi
β

∂xj
− ρ

j

β

∂ρi
α

∂xj
= ρi

γ C
γ

αβ and
∑

cyclic(α,β,γ )

[
ρi

α

∂Cν
βγ

∂xi
+ Cν

αµC
µ
βγ

]
= 0,

which are called the structure equations of the Lie algebroid.

2.2. Exterior differential

The anchor ρ allows us to define the differential of a function on the base manifold with
respect to an element a ∈ E. It is given by

df (a) = ρ(a)f.

It follows that the differential of f at the point m ∈ M is an element of E∗
m.

Moreover, a structure of Lie algebroid on E allows us to extend the differential to sections
of the bundle (E∗)∧p which we will call just p-forms. If ω ∈ ∧p

E, then dω ∈ ∧p+1
E is

defined by

dω(σ0, σ1, . . . , σp) =
∑

i

ρ(σi)(−1)iω(σ0, . . . , σ̂i , . . . , σp)

+
∑
i<j

(−1)i+jω([σi, σj ], σ0, . . . , σ̂i , . . . , σ̂j , . . . , σp).

It follows that d is a cohomology operator, that is d2 = 0.
Locally, the exterior differential is determined by

dxi = ρi
αeα and deγ = − 1

2C
γ

αβeα ∧ eβ.

In this paper, the symbol d will always denote the exterior differential on the Lie algebroid E
and not the ordinary exterior differential on a manifold M to which it reduces when E is the
standard Lie algebroid E = TM over M.

The usual Cartan calculus extends to the case of Lie algebroids (see [21]). For every section
σ of E, we have a derivation iσ (contraction) of degree −1 and a derivation dσ = iσ ◦ d + d ◦ iσ
(Lie derivative) of degree 0. Since d2 = 0, we have that dσ ◦ d = d ◦ dσ .

2.3. Admissible maps and morphisms

Let τ : E → M and τ ′: E′ → M ′ be two Lie algebroids, with anchor maps ρ: E → TM
and ρ ′: E′ → TM′. Let �: E → E′ be a fibrewise linear map over φ: M → M ′. We
will say that � is admissible if it maps admissible curves into admissible curves. It follows
that � is admissible if and only if T φ ◦ ρ = ρ ′ ◦ �. This condition can be conveniently
expressed in terms of the exterior differential as follows. The map � is admissible if and only
if �� df = d��f for every function f ∈ C∞(M ′). The map � is said to be a morphism if
�� dθ = d��θ for every θ ∈ ∧

E. Obviously, a morphism is an admissible map.
Let (xi) be a local coordinate system on M and (x ′i ) a local coordinate system on M ′. Let

{eα} and {e′
α} be local basis of sections of E and E′, respectively, and {eα} and {e′α} the dual

basis. The bundle map � is determined by the relations ��x ′i = φi(x) and ��e′α = φα
βeβ for

certain local functions φi and φα
β on M. Then, � is admissible if and only if

ρj
α

∂φi

∂xj
= ρ ′i

β φβ
α .
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The map � is a morphism of Lie algebroids if and only if

φβ
γ C

γ

αδ =
(

ρi
α

∂φ
β

δ

∂xi
− ρi

δ

∂φβ
α

∂xi

)
+ C

′β
θσ φθ

αφσ
δ ,

in addition to the admissibility condition above. In these expressions, ρi
α and Cα

βγ are the
structure functions on E, and ρ ′i

α and C ′α
βγ are the structure functions on E′.

2.4. Flow defined by a section

Every section of a Lie algebroid has an associated local flow composed of morphisms of Lie
algebroids.

Theorem 1. Let σ be a section of a Lie algebroid τ : E → M . There exists a local flow
�s : E → E such that

dσ θ = d

ds
��

sθ

∣∣∣∣
s=0

,

for any section θ of
∧

E. For every fixed s, the map �s is a morphism of Lie algebroids. The
base maps φs : M → M are the flow of the vector field ρ(σ) ∈ X(M).

Proof. Indeed, let XC

σ be the vector field on E determined by its action on fibrewise linear
functions XC

σ θ̂ = d̂σ θ , for every section θ of E∗, and which is known as the complete lift of
σ (see [16, 19]). It follows that XC

σ ∈ X(E) is projectable and projects to the vector field
ρ(σ) ∈ X(M). Thus, if we consider the flow �s of XC

σ and the flow φs of ρ(σ), we have that
�s is a bundle map over φs . Moreover, since XC

σ is linear (maps linear functions into linear
functions), we have that �s is a vector bundle map for every s.

In order to prove the relation dσ θ = d
ds

��
sθ

∣∣
s=0, it is sufficient to prove it for 1-forms θ .

Then, for every m ∈ M and a ∈ Em, we have

〈(dσ θ)m, a〉 = d̂σ θ(a) = (
XC

σ θ̂
)
(a) = d

ds
(θ̂ ◦ �s)

∣∣∣∣
s=0

(a)

= d

ds

〈
θφs(m),�s(a)

〉∣∣∣∣
s=0

= d

ds
��

sθ

∣∣∣∣
s=0

(a).

Moreover, the maps �s are morphisms of Lie algebroids since the Lie derivative dσ is a
derivation of the Lie algebra (Sec(E), [·, ·]) (see [18], theorem 4.4). �

By duality, it follows that dσ ζ = d
ds

��
sζ

∣∣
s=0 for every section ζ of E. Therefore, we have

a similar formula for the derivative of any tensor field.

Remark 2. In the case of the standard Lie algebroid E = TM, we have that a section σ is
but a vector field on M. In this case, the vector field XC

σ is but the usual complete lift of the
vector field σ and the flow defined by the section σ is but �s = T φs where φs is the flow of
the vector field σ .

3. Jets

We consider two vector bundles τE
M : E → M and τF

N : F → N and a surjective vector bundle
map π : E → F over the map ν: M → N . Moreover, we will assume that ν: M → N is a
smooth fibre bundle. We will denote by K → M the kernel of the map π , which is a vector
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bundle over M. Given a point m ∈ M , if we denote n = ν(m), we have the following exact
sequence:

0 → Km → Em → Fn → 0,

and we can consider the set Jmπ of splittings φ of such sequence. More concretely, we define
the following sets:

Lmπ = {w : Fn → Em|w is linear},
Jmπ = {

φ ∈ Lmπ |π ◦ φ = idFn

}
,

Vmπ = {ψ ∈ Lmπ |π ◦ ψ = 0}.
Therefore, Lmπ is a vector space, Vmπ is a vector subspace of Lmπ and Jmπ is an affine
subspace of Lmπ modelled on the vector space is Vmπ . By taking the union, Lπ =
∪m∈MLmπ,Jπ = ∪m∈MJmπ and Vπ = ∪m∈MVmπ , we get the vector bundle π̃10:Lπ → M

and the affine sub-bundle π10:Jπ → M modelled on the vector bundle π10:Vπ → M . We
will also consider the projection π1:Jπ → N defined by composition π1 = ν ◦ π10.

Remark 3. In the standard case, one has a bundle ν: M → N and then consider the
tangent spaces at m ∈ M and n = ν(m) ∈ N together with the differential of the projection
Tmν: TmM → TnN . A 1-jet at m, in the standard sense, is a linear map φ: TnN → TmM

such that Tmν ◦ φ = idTnN . It follows that there exist sections ϕ of the bundle ν such that
ϕ(n) = m and Tnϕ = φ. Thus, in the case of the tangent bundles τN : F ≡ TN → N and
τM : E ≡ TM → M with π = T ν: TM → TN, our definition is equivalent to the standard
definition of a 1-jet at a point m as an equivalence class of sections which has the same
value and same first derivative at the point m. With the standard notations [24], we have that
J 1ν ≡ J (T ν). Obviously, this example leads our developments throughout this paper.

In view of this fact, an element of Jmπ will be simply called a jet at the point m ∈ M and
accordingly the bundle Jπ is said to be the first jet bundle of π .

Local coordinates on Jπ are given as follows. We consider local coordinates (x̄i) on N
and (xi, uA) on M adapted to the projection ν, that is x̄i ◦ ν = xi . We also consider local basis
of sections {ēa} of F and {ea, eα} of E adapted to the projection π , that is π ◦ ea = ēa ◦ ν and
π ◦ eα = 0. In this way, {eα} is a base of sections of K. An element w in Lmπ is of the form
w = (

wb
aeb + wα

a eα

) ⊗ ēa , and it is in Jmπ if and only if wb
a = δb

a , i.e. an element φ in Jπ is
of the form φ = (

ea + φα
a eα

) ⊗ ēa . If we set yα
a (φ) = φα

a , we have adapted local coordinates(
xi, uA, yα

a

)
on Jπ . Similarly, an element ψ ∈ Vmπ is of the form ψ = ψα

a eα ⊗ ēa . If we
set yα

a (ψ) = ψα
a , we have adapted local coordinates

(
xi, uA, yα

a

)
on Vπ . As usual, we use

the same name for the coordinates in an affine bundle and in the associated vector bundle.
An element z ∈ Lm

∗π defines an affine function ẑ on Jmπ by contraction ẑ(φ) = 〈z, φ〉
where 〈·, ·〉 is the pairing 〈z, φ〉 = tr(z ◦ φ) = tr(φ ◦ z). Therefore, a section θ of L∗π defines
a fibrewise affine function θ̂ on Jπ, θ̂(φ) = 〈

θπ10(φ), φ
〉 = tr

(
θπ10(φ) ◦ φ

)
. In local coordinates,

a section of L∗π is of the form θ = (
θa
b (x)eb + θa

α (x)eα
) ⊗ ēa , and the affine function defined

by θ is

θ̂ = θa
a (x) + θa

α (x)yα
a .

3.1. Anchor

Consider now anchored structures on the bundles E and F, that is, we have two vector bundle
maps ρF : F → TN and ρE : E → TM over the identity in N and M, respectively. We will
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assume that the map π is admissible, that is ρF ◦ π = T ν ◦ ρE . Therefore, we have

ρF (ēa) = ρi
a

∂

∂x̄i
and


ρE(ea) = ρi

a

∂

∂xi
+ ρA

a

∂

∂uA
,

ρE(eα) = ρA
α

∂

∂uA
,

with ρi
a = ρi

a(x), ρA
a = ρA

a (x, u) and ρA
α = ρA

α (x, u). Equivalently,

dx̄i = ρi
aē

a and

{
dxi = ρi

ae
a,

duA = ρA
a ea + ρA

α eα.

The anchor allows us to define the concept of total derivative of a function with respect
to a section. Given a section σ ∈ Sec(F ), the total derivative of a function f ∈ C∞(M) with
respect to σ is the function d̂f ⊗ σ , i.e. the affine function associated to df ⊗ σ ∈ Sec(L∗π).
In particular, the total derivative with respect to an element ēa of the local basis of sections
of F, will be denoted by f́ |a . In this way, if σ = σaēa , then d̂f ⊗ σ = f́ |aσ a , where the
coordinate expression of f́ |a is

f́ |a = ρi
a

∂f

∂xi
+

(
ρA

a + ρA
α yα

a

) ∂f

∂uA
.

Note that, for a function f in the base N, we have that f́ |a = ρi
a

∂f

∂xi are just the components of
df in the basis {ēa}.

3.2. Bracket

Let us finally assume that we have Lie algebroid structures on τF
N : F → N and on τE

M : E → M ,
and that the projection π is a morphism of Lie algebroids. This condition implies the vanishing
of some structure functions.

We have the following expressions for the brackets of elements in the basis of sections:

[ēa, ēb] = Cc
abēc and


[ea, eb] = C

γ

abeγ + Cc
abec,

[ea, eβ ] = C
γ

aβeγ ,

[eα, eβ ] = C
γ

αβeγ ,

where Ca
bc = Ca

bc(x) is a basic function. The exterior differentials in F and E are determined
by

dēa = − 1
2Ca

bcē
b ∧ ēc and

{
dea = − 1

2Ca
bce

b ∧ ec,

deα = − 1
2Cα

bce
b ∧ ec − Cα

bγ eb ∧ eγ − 1
2Cα

βγ eβ ∧ eγ .

3.2.1. Affine structure functions. We define the affine functions Zα
aγ and Zα

ac by

Zα
aγ = ̂(

deγ
eα

) ⊗ ēa and Zα
ac = ̂(

dec
eα

) ⊗ ēa.

Explicitly, we have

Zα
aγ = Cα

aγ + Cα
βγ yβ

a and Zα
ac = Cα

ac + Cα
βcy

β
a .

Indeed, (
deγ

eα
) ⊗ ēa = ieγ

(− 1
2Cα

bce
b ∧ ec − Cα

bθe
b ∧ eθ − 1

2Cα
βθe

β ∧ eθ
) ⊗ ēa

= (
Cα

bγ eb + Cα
βγ eβ

) ⊗ ēa,

and thus Zα
aγ = ̂(

Cα
bγ eb + Cα

βγ eβ
) ⊗ ēa = Cα

aγ + Cα
βγ y

β
a . The second coordinate expression

can be found in a similar way.
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4. Morphisms and admissible maps

By a section of π , we mean a vector bundle map � such that π ◦ � = id (i.e. we consider
only linear sections of π (see also [15])). It follows that the base map φ: N → M is a section
of ν, i.e. ν ◦ φ = idN . The set of sections of π will be denoted by Sec(π). We will find local
conditions for this map to be an admissible map between anchored vector bundles and also
local conditions for this map to be a morphism of Lie algebroids. The set of those sections of
π which are a morphism of Lie algebroids will be denoted by M(π).

Taking adapted local coordinates (xi, uA) on M, the map φ has the expression φ(xi) =
(xi, φA(x)). If we moreover take an adapted basis {ea, eα} of local sections of E, then the
expression of � is given by �(ēa) = ea + φα

a eα , so that the map � is determined by the
functions

(
φA(x), φα

a (x)
)

locally defined on N. The action on the dual basis is ��ea = ēa , and
��eα = φα

a ēa , and for the coordinate functions ��xi = x̄i and ��uA = φA.
Let us see what the admissibility condition ��(df ) = d(��f ) means for this maps. We

impose this condition to the coordinate functions. Taking f = xi we get an identity (i.e. no
new condition arises) and taking f = uA we get

dφA = d(��uA) = ��(duA) = ��
(
ρA

a ea + ρA
α eα

) = [(
ρA

a ◦ φ
)

+
(
ρA

α ◦ φ
)
φα

a

]
ēa,

from where we get that � is an admissible map if and only if

ρi
a

∂φA

∂xi
= (

ρA
a ◦ φ

)
+

(
ρA

α ◦ φ
)
φα

a .

In order to simplify the writing, we will apply the usual convention and we will omit the
composition with φ, since we know that this is an equation to be satisfied at the point
m = φ(n) = (xi, φA(x)) for every n ∈ N . With this convention, the above equation is written
as

ρi
a

∂uA

∂xi
= ρA

a + ρA
α yα

a .

Let us now see what the condition of being a morphism means in coordinates. If we
impose �� dea = d��ea we get an identity, so that we just have to impose �� deα = d��eα .
On one hand, we have

d(��eα) = d
(
φα

a ēa
) = 1

2

(
ρi

b

∂φα
c

∂xi
− ρi

c

∂φα
b

∂xi
− φα

a Ca
bc

)
ēb ∧ ēc

and on the other hand

�� d(eα) = −��
(

1
2Cα

βγ eβ ∧ eγ + Cα
bγ eb ∧ eγ + 1

2Cα
bce

b ∧ ec
)

= − 1
2

(
Cα

βγ φ
β

b φγ
c + Cα

bγ φγ
c − Cα

cγ φ
γ

b + Cα
bc

)
ēb ∧ ēc.

Thus, the bundle map � is a morphism if and only if it satisfies

ρi
b

∂φα
c

∂xi
− ρi

c

∂φα
b

∂xi
− φα

a Ca
bc + Cα

βγ φ
β

b φγ
c + Cα

bγ φγ
c − Cα

cγ φ
γ

b + Cα
bc = 0,

in addition to the admissibility condition. Taking into account our notation f́ |a = ρi
a

∂f

∂xi for a
function f ∈ C∞(N), we can write the above expressions as

úA
|a = ρA

a + ρA
α yα

a ,
(
ýα

c|b + Cα
bγ yγ

c

) − (
ýα

b|c + Cα
cγ y

γ

b

)
+ Cα

βγ y
β

b yγ
c − yα

a Ca
bc + Cα

bc = 0,

where we recall that they are to be satisfied at every point m = φ(n).



Classical field theory on Lie algebroids 7153

5. Complete lift of a section

In this section we will define the lift of a projectable section of E to a vector field on Jπ , in
a similar way to the definition of the first jet prolongations of a projectable vector field in the
standard theory of jet bundles [24].

We consider a section σ of a Lie algebroid E projectable over a section η of F. We denote
by �s the flow on E associated to σ and by �s the flow on F associated to η. We recall that,
for every fixed s, the maps �s and �s are morphisms of Lie algebroids. Moreover, the base
maps ψs and φs are but the flows of the vector fields ρE(σ ) and ρF (η), respectively.

The projectability of the section implies the projectability of the flow. It follows that
(locally, in the domain of the flows) we have defined a map L�s :Lπ → Lπ by means of

L�s(w) = �s ◦ w ◦ �−s .

By restriction of L�s to Jπ we get a map J�s , which is a local flow in Jπ . We will denote
by X(1)

σ the vector field on Jπ generating the flow J�s . The vector field X(1)

σ will be called
the complete lift to Jπ of the section σ . Since J�s projects to the flow ψs , it follows that the
vector field X(1)

σ projects to the vector field ρE(σ ) in M.

5.1. Derivative of a section of L∗π

In order to find a more operational redefinition of the complete lift, we consider the derivative
of a section of L∗π with respect to a projectable section. If we are given a projectable section
σ of E, then we can define the Lie derivative of θ ∈ Sec(L∗π) with respect to σ by means of

dσ θ = d

ds
��

s θ

∣∣∣∣
s=0

.

Here by ��
s θ we mean (��

s θ)m = �−s ◦ θψs(m) ◦ �s , so that the above derivative is given
explicitly by

(dσ θ)(a) = d

ds

(
�−s

(
θψs(m)(�s(a))

))∣∣∣∣
s=0

,

for every a ∈ Em. It can be easily seen that this prescription defines a derivation of the module
of sections of L∗π , with associated vector field ρE(σ ).

An alternative definition can be given as follows. Given θ ∈ Sec(L∗π), we take P any
section of E∗ ⊗ E such that θ = π ◦ P . Then, we have that

dσ θ = π ◦ dσP .

The right-hand side is independent of the choice of P because K is a π -ideal. Indeed, if we
take two different tensors P, they differ by a section ζ of E∗ ⊗ K . Then, for any section
η ∈ Sec(E),

π((dσ ζ )(η)) = π(dσ (ζ(η))) − π(ζ(dσ η)) = π(dσ (ζ(η))),

which vanishes, because σ is projectable and ζ(η) a section of K.
The equivalence of both definitions follows by taking into account that (��

s P )m =
�−s ◦ Pψs(m) ◦ �s and thus

(��
s θ)m = �−s ◦ θψs(m) ◦ �s = �−s ◦ π ◦ Pψs(m) ◦ �s

= π ◦ �−s ◦ Pψs(m) ◦ �s = π ◦ (��
s P )m.

In particular, the above definition implies that the usual rules for calculating Lie derivatives
apply to the calculation of dσ θ .
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Note the following relation between the action of L∗�s and the pullback:

(��
s θ)m = L∗�s

(
θψs(m)

)
.

Indeed, for every m ∈ M and w ∈ Lmπ , we have〈
L∗�s

(
θψs(m)

)
, w

〉 = 〈
θψs(m),L�s(w)

〉 = tr
(
θψs(m) ◦ �s ◦ w ◦ �−s

)
= tr

(
�−s ◦ θψs(m) ◦ �s ◦ w

) = 〈(��
s θ)m,w〉.

With the help of the derivative of a section of L∗π , we can characterize the complete lift
of a projectable section of E in terms of its action on affine functions as follows.

Proposition 4. Given a projectable section σ of E, the vector field X(1)
σ is characterized by

the following properties:

• X(1)
σ is projectable and projects to ρ(σ);

• L
X

(1)
σ

θ̂ = d̂σ θ , for every section θ of L∗π .

Proof. It is easy to see that both conditions are compatible, and therefore they define a
unique vector field in Jπ . We just have to prove that X(1)

σ satisfies those properties. From the
definition of X(1)

σ , it is clear that it projects to ρ(σ). Moreover, for every section θ of Lπ∗, we
have that

θ̂ (J�s(φ)) = 〈
θψs(m),J�s(φ)

〉 = 〈
θψs(m),L�s(φ)

〉
= 〈

L∗�s

(
θψs(m)

)
, φ

〉 = 〈(��
s θ)m, φ〉,

and taking the derivative with respect to s at s = 0,

X(1)
σ (θ̂ )(φ) = d

ds
θ̂(J�s(φ))

∣∣∣∣
s=0

= d

ds
〈(��

s θ)m, φ〉
∣∣∣∣
s=0

= 〈(dσ θ)m, φ〉 = d̂σ θ(φ),

which concludes the proof. �

5.1.1. Local expression. Locally, a section σ = σaea + σαeα is projectable if σa = σa(xi)

depends only on xi . If its complete lift X(1)
σ projects to ρ(σ), it must be of the form

X(1)
σ = ρi

aσ
a ∂

∂xi
+

(
ρA

a σ a + ρA
α σα

) ∂

∂uA
+ σα

a

∂

∂yα
a

,

where the function σα
a are to be determined by the second condition. If we take the local

section θ = eα ⊗ ēa of L∗π , then θ̂ = yα
a , and thus σα

a = dσC yα
a = dσC θ̂ = d̂σ θ . We have

dσ θ = (dσ eα) ⊗ ēa + eα ⊗ (dηēa) = (dσ eα) ⊗ ēa − eα ⊗ dēa
η.

Also,

dσ eα = diσ eα + iσ deα = dσα + σbieb
deα + σβieβ

deα

and

dēa
η = [ēa, η] =

(
ρi

a

∂σ b

∂xi
+ σ cCb

ac

)
ēb.

Putting all together

dσ θ = dσα ⊗ ēa + σb
(
ieb

deα ⊗ ēa

)
+ σβ

(
ieβ

deα ⊗ ēa

) − (
σ́ b

|a + σ cCb
ac

)
eα ⊗ ēb,

and taking into account the definition of the functions Zα
ab and Zα

aβ , we arrive to

σα
a = σ́ α

|a + Zα
abσ

b + Zα
aβσβ − yα

b

(
σ́ b

|a + σ cCb
ac

)
.

In particular, if σ projects to 0, i.e. σa = 0, we have

X(1)
σ = ρA

α σα ∂

∂uA
+

(
σ́ α

|a + Zα
aβσβ

) ∂

∂yα
a

.
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6. Variational calculus

In what follows in this paper we consider the case where the Lie algebroid F is the tangent
bundle F = TN with ρF = idTN and [·, ·] the usual Lie bracket of vector fields on N. The Lie
algebroid E remains a general Lie algebroid.

6.1. Variational problem

Given a Lagrangian function L ∈ C∞(Jπ) and a volume form ω ∈ ∧r
(TN), where

r = dim(N), we consider the following variational problem: find the critical points of
the action functional

S(�) =
∫

N

L(�)ω

defined on the set of sections of π which are moreover morphisms of Lie algebroids, that is,
defined on the set M(π). Here by L(�) we mean the function n 	→ L(�n), where �n ∈ Jπ

is the restriction of � to the fibre Fn = TnN .
It is important to note that the above variational problem is a constrained problem, not

only because the condition π ◦ � = idF , which can be easily solved, but because of the
condition of � being a morphism of Lie algebroids, which is a condition on the derivatives of
�. Taking coordinates on N such that the volume form is ω = dx1 ∧ · · · ∧ dxr , the problem
is to find the critical points of∫

N

L
(
xi, uA, yα

a

)
dx1 ∧ · · · ∧ dxr ,

subject to the constraints

∂uA

∂xa
= ρA

a + ρA
α yα

a ,
∂yα

c

∂xb
− ∂yα

b

∂xc
+ Cα

bγ yγ
c − Cα

cγ y
γ

b + Cα
βγ y

β

b yγ
c + Cα

bc = 0,

where we have taken into account that Ca
bc = 0 due to our choice of a coordinate basis for

local sections of TN.
The first method one can try for solving the problem is to use Lagrange multipliers.

Nevertheless, one has no warranties that all solutions to this problem are normal (i.e. not
strictly abnormal). In fact, in very simple cases as the problem of a heavy top [19], one
can easily see that there will be strictly abnormal solutions. Therefore, we will try another
alternative, which consists in finding explicitly finite variations of a solution, that is, by defining
a curve in M(π) starting at the given solution.

6.2. Equations for critical sections

In order to find admissible variations, we consider sections of E and the associated flow. With
the help of this flow, we can transform morphisms of Lie algebroids into morphisms of Lie
algebroids.

Let � be a critical point of S. In order to find admissible variations, we consider a
π -vertical section σ of E. Its flow �s : E → E projects to the identity in F = TN. Moreover,
we will require σ to have compact support. Since for every fixed s, the map �s is a morphism
of Lie algebroids, it follows that the map �s = �s ◦ � is a section of π and a morphism of
Lie algebroids, that is, s 	→ �s is a curve in M(π). Using this kind of variations, we have the
following result.
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Theorem 5. A map � is a critical section of S if and only if in local coordinates such that
the volume form is ω = dx1 ∧ · · · ∧ dxr the components yα

a of � satisfy the system of partial
differential equations

∂uA

∂xa
= ρA

a + ρA
α yα

a ,

∂yα
a

∂xb
− ∂yα

b

∂xa
+ Cα

bγ yγ
a − Cα

aγ y
γ

b + Cα
βγ y

β

b yγ
a + Cα

ba = 0,

d

dxa

(
∂L

∂yα
a

)
= ∂L

∂y
γ
a

Zγ
aα +

∂L

∂uA
ρA

α .

Proof. Recall that by L(�) we mean the function in N given by L(�)(n) = L(�n), where
�n is the restriction of �: F → E to the fibre Fn. The function L(�s) is

L(�s)(n) = L(�s ◦ �n) = L(J�s(�n)) = (J�∗
s L)(�)(n),

and therefore the variation of the action along the curve s 	→ �s is

0 = d

ds
S(�s)

∣∣∣∣
s=0

=
∫

N

d

ds
L(�s)

∣∣∣∣
s=0

ω =
∫

N

(
L

X
(1)
σ

L
)
(�)ω.

Taking into account the local expression of X(1)
σ for a π -vertical σ , we have that

L
X

(1)
σ

L = ρA
α σα ∂L

∂uA
+

(
dσα

dxa
+ Zα

aβσβ

)
∂L

∂yα
a

= σα

[
ρA

α

∂L

∂uA
+ Zγ

aα

∂L

∂y
γ
a

− d

dxa

(
∂L

∂yα
a

)]
+

d

dxa

(
σα ∂L

∂yα
a

)
.

Let us denote by δL the expression with components

δLα = d

dxa

(
∂L

∂yα
a

)
− Zγ

aα

∂L

∂y
γ
a

− ρA
α

∂L

∂uA

and by Jσ the (r − 1)-form (along π1) Jσ = σα ∂L
∂yα

a
ωa with ωa = i ∂

∂xa
ω. Then, we have that

0 = d

ds
S(�s)

∣∣∣∣
s=0

= −
∫

N

(δLασα)ω +
∫

N

d(Jσ ◦ �).

Since σ has compact support, the second term vanishes by the Stokes theorem. Moreover,
since the section σ is arbitrary, by the fundamental theorem of the calculus of variations, we
get δL = 0, which are the Euler–Lagrange equations. Note that the first two equations in the
above statement are but the morphism conditions. �

Remark 6. We can consider a more general problem and we can look for the critical points
of the action

∫
N

L(�)ω where � is restricted to be an admissible map, i.e. with the constraints
uA

,a = ρA
a + ρA

α yα
a . If we apply formally the Lagrange multiplier trick, we get the first and the

third of the above equations for ∂L
∂yα

a
= ρA

α pa
A, where pA

a the Lagrange multipliers. Moreover,

the integrability conditions for the admissibility equations are ρA
α Mα

ab = 0, where

Mα
ab = ∂yα

a

∂xb
− ∂yα

b

∂xa
+ Cα

bγ yγ
a − Cα

aγ y
γ

b + Cα
βγ y

β

b yγ
a + Cα

ba,

i.e. Mα
ab = 0 are the morphism conditions. Therefore, if ρ|K is injective, we recover the three

field equations. Nevertheless, even in that case, we cannot ensure that the Lagrange multiplier
method captures all the solutions.
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6.3. Noether’s theorem

It is well known that Noether’s theorem is a consequence of the existence of a variational
description of a problem. In the standard case [10], when the Lagrangian is invariant by the
first jet prolongation of a vertical vector field Z, then the Noether current J = iZ(1)�L is a
conserved current, that is, its pullback by any solution of the Euler–Lagrange equations is
a closed form on the base manifold N, and therefore its integral over any closed (r − 1)-
dimensional submanifold vanishes. We will show that a similar statement can be obtained for
a field theory over Lie algebroids.

Consider a section σ of E vertical over F = TN, and the associated vector field X(1)

σ .
We can associate to σ a current Jσ (i.e. a (r − 1)-form along π1) as in the standard case by
means of

Jσ = ∂L

∂yα
a

σαωa,

which can be defined intrinsically via vertical lifting.

Definition 7. We will say that the Lagrangian density L is invariant under a π -vertical section
σ ∈ Sec(E) if L

X
(1)
σ

L = 0. An (r − 1)-form λ along π1 is said to be a conserved current if
λ ◦ � is a closed form on N for any solution � of the Euler–Lagrange equations.

It follows from this definition that L is invariant under σ if and only if it is invariant under
J�s , where �s is the flow defined by the section σ .

Theorem 8. Let σ ∈ Sec(E) be a π -vertical section. If the Lagrangian is invariant under the
section σ , then Jσ is a conserved current.

Proof. Indeed, following the steps in the derivation of the Euler–Lagrange equations, we have
that

(
L

X
(1)
σ

L
)
ω = −δLασαω + d(Jσ ◦ �). Therefore, if � is a solution of the Euler–Lagrange

equations, the first term vanishes and, since L
X

(1)
σ

L = 0, we have that d(Jσ ◦ �) = 0. �

7. Examples

7.1. Standard case

In the standard case, we consider a bundle ν: M → N , the standard Lie algebroids F = TN
and E = TM and the tangent map π = T ν: TM → TN. Then, we have that Jπ = J 1ν.
When we choose coordinate basis of vector fields (i.e. of sections of TN and TM), we recover
the equations for the standard first-order field theory.

Moreover, if we consider a different basis, what we get is the equations for a first-order
field theory but written in pseudo-coordinates. In particular, one can take an Ehresmann
connection on the bundle ν: M → N and use an adapted local basis

ēi = ∂

∂xi
and ei = ∂

∂xi
− �A

i

∂

∂uA
, eA = ∂

∂uA
.

In this case, the Greek indices and the Latin capital indices coincide. We have the brackets

[ei, ej ] = RA
ij eA [ei, eB ] = �A

iBeA and [eA, eB ] = 0,

where we have written �B
iA = ∂�B

i

/
∂uA and where RA

ij is the curvature tensor of the nonlinear
connection we have chosen. The components of the anchor are ρi

j = δi
j , ρ

A
i = −�A

i and
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ρA
B = δA

B , so that the Euler–Lagrange equations are

∂uA

∂xi
= yA

i − �A
i ,

∂yA
i

∂xj
− ∂yA

j

∂xi
+ �A

jByB
i − �A

iByB
j = RA

ij ,

d

dxi

(
∂L

∂yA
i

)
− �B

iA

∂L

∂yB
i

= ∂L

∂uA
.

See [4, 10] for an alternative derivation of this equations.

7.2. Time-dependent mechanics

In [22, 23] we developed a theory of Lagrangian mechanics for time-dependent systems
defined on Lie algebroids, where the base manifold is fibred over the real line R. Since
time-dependent mechanics is but a one-dimensional field theory, our results must reduce to
that.

The morphism condition is just the admissibility condition so that, if we write x0 ≡ t and
yα

0 ≡ yα , the Euler–Lagrange equations are

duA

dt
= ρA

0 + ρA
α yα,

d

dt

(
∂L

∂yα

)
= ∂L

∂yγ

(
C

γ

0α + C
γ

βαyβ
)

+
∂L

∂uA
ρA

α ,

in full agreement with [20].

7.3. Chern–Simons theory

We consider a Lie algebra g with an ad-invariant metric k. We choose a basis {εα} of g and
the structure constants Cα

βγ in that basis. If kαβ are the components of the metric k, then the
symbols Cαβγ = kαµC

µ
βγ are skewsymmetric in all indices. We consider a three-dimensional

manifold N and the Lie algebroid E = TN × g → N with the projection onto the first factor.
A basis for sections of E is given by eα(n) = (n, εα). The maps π and ν are π(v, ξ) = v and
ν = idN .

If a map � from TN to E is a section of π , then � is of the form �(v) = (v,Aα(v)εα)

for some 1-forms Aα on N. In other words, ��eα = Aα . The Lagrangian density for Chern–
Simons theory is

L dx1 ∧ dx2 ∧ dx3 = 1

3!
Cαβγ Aα ∧ Aβ ∧ Aγ .

With the notation of this paper, the coordinates yα
a are the components of Aα , that is,

Aα = yα
a dxa . Therefore, the Lagrangian is L = Cαβγ yα

1 y
β

2 y
γ

3 .
There is no admissibility condition in this case, since there are no coordinates uA. The

morphism conditions are ýα
i|j − ýα

j |i + Cα
βγ y

β

j y
γ

i = 0, and can be written conveniently in terms
of the 1-forms Aα as

dAα + 1
2Cα

βγ Aβ ∧ Aγ = 0.

For the momenta, we have that
∂L

∂yα
1

= Cαβγ y
β

2 y
γ

3 ,
∂L

∂yα
2

= Cβαγ y
β

1 y
γ

3 and
∂L

∂yα
3

= Cβγαy
β

1 y
γ

2 ,

so that the Euler–Lagrange equations reduce to
d

dxa

∂L

∂yα
a

− ∂L

∂y
γ
a

C
γ

βαyβ
a = Cαβγ

[(
y

β

2|1 − y
β

1|2 + Cβ
µνy

µ

1 yν
2

)
y

γ

3

+
(
y

β

1|3 − y
β

3|1 + Cβ
µνy

µ

3 yν
1

)
y

γ

2 +
(
y

β

3|2 − y
β

2|3 + Cβ
µνy

µ

2 yν
3

)
y

γ

1

] = 0,

which vanish identically in view of the morphism condition.
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The conventional Lagrangian density for the Chern–Simons theory is

L′ω = kαβ

(
Aα ∧ dAβ + 1

3Cβ
µνA

α ∧ Aµ ∧ Aν
)
,

and the difference between L′ and L is a multiple of the morphism condition

L′ω − Lω = kαµAµ
[
dAα + 1

2Cα
βγ Aβ ∧ Aγ

]
.

Therefore, both Lagrangians coincide on the set M(π) of morphisms, which is the set where
the action is defined.

7.4. Systems with symmetry

The case of a system with symmetry is very important in physics. We consider a principal
bundle ν: P → M with structure group G and we set N = M,F = TN and E = TP/G (the
Atiyah algebroid of P), with π([v]) = T ν(v). Sections of π are just principal connections on
P and a section is a morphism if and only if it is a flat connection. The kernel K is just the
adjoint bundle (P × g)/G → M .

An adequate choice of a local basis of sections of F,K and E is as follows. Take a
coordinate basis ēi = ∂/∂xi for F = TM, take a basis {εα} of the Lie algebra g and the
corresponding sections of the adjoint bundle {eα}, so that C

γ

αβ are the structure constants of
the Lie algebra. Finally, we take sections {ei} of E such that ei projects to ēi , that is, we chose
a (local) connection and ei is the horizontal lift of ēi . Thus, we have [ei, ej ] = �α

ij eα and
[ei, eα] = 0. In this case, there are no coordinates uA, and with the above choice of basis we
have that the Euler–Lagrange equations are

∂yα
a

∂xb
− ∂yα

b

∂xa
+ Cα

βγ y
β

b yγ
a = �α

ab,
d

dxa

(
∂L

∂yα
a

)
− ∂L

∂y
γ
a

C
γ

βαyβ
a = 0.

In particular, for the definition of our sections, we can choose a flat connection (for
instance, a solution of our variational problem or just a coordinate basis). Then, we have that
�α

ab = 0 in the above equations, which are then called the covariant Euler–Poincaré equations
[7, 6].

8. Conclusions and outlook

In this contribution, we have dealt with the constrained variational problem consisting of
finding the critical sections of the integral of a Lagrangian function, where the fields are
restricted to being morphisms from TN to a Lie algebroid E, and we have found the Euler–
Lagrange equations. The admissible variations are determined by the geometry of the problem
and are not prescribed in an ad hoc manner.

Particular cases of our Euler–Lagrange equations are the Euler–Poincaré equations for
a system defined on the bundle of connections of a principal bundle, the Lagrange–Poincaré
equations for systems defined on a bundle of homogeneous spaces and the Lagrange–Poincaré
for systems defined in semidirect products.

In the standard case, when E = TM, the existence of a multisymplectic form is
fundamental in the development of the theory. Preliminary calculations show that in the
case of arbitrary Lie algebroids one can also find a Cartan form [11, 13] and a multisymplectic
form, and the field equations are obtained via a multisymplectic equation.

Another interesting problem under development is the determination of those Lagrangians
which give rise to null Euler–Lagrange equations, as it was the case of the Chern–Simons
theory. Finally, it would be interesting to find a variational principle for the case of a general
Lie algebroid F �= TN.
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